CdLS Foundation Genetic Testing-How to read your child's test results

April 24, 2019

Alena Egense, MGC, CGC University of Maryland Pediatric Genetics

Sarah Raible, MS, CGC Children's Hospital of Philadelphia Please note: Knowledge in this presentation is based on current knowledge as of April 2019. Genetics changes over time so after this point we recommend speaking to geneticist/genetic counselor team for any further updates about the topic

Outline

What is genetic testing

Types of testing available in 2019 Postnatal for children/adults Prenatal testing Research

Reading a genetic test report What does it mean?

Pros/cons of genetic testing

Nuts and Bolts: Chromosomes and Genes

Nuts and Bolts: Chromosomes

- 23 pairs, 46 total, in every cell of the body
- Both males and females have pairs #1-22
- Sex chromosomes: XX and XY
- Almost all genes packaged onto chromosomes

CdLS Foundation Cornelia de Lange Syndrome Foundation, Inc.

Nuts and Bolts: Chromosome Differences

Too many

Ex: Trisomy 21 (Down syndrome)

Too few

Missing pieces (deletions)

**Ex: 5p13 deletion including a CdLS gene

Extra pieces (duplications)

Pieces that switch places (translocations)

Balanced translocation Unbalanced translocation

Nuts and Bolts: Genes

Approximately 25,000 in the human genome

- About 5% of the human genome contains known genes
- Function of much of the genome is unknown

Mistakes happen \rightarrow mutations

• Deletions, duplications, expansions, point mutations

CdLS Foundation Cornelia de Lange Syndrome Foundation, Inc.

Autosomal Dominant: New Mutation (de novo)

De novo = new

99% individuals with CdLS have a genetic change inherited in this way

Can be on chromosomes pairs 1-22 (called autosomal dominant)

OR

chromosomes X (X-linked dominant)

Autosomal Dominant: Inherited

<1% individuals have been found to have genetic change inherited from a parent

X-Linked:

10

Both males and females with **SMC1A**and **HDAC8**-related CdLS

In females with HDAC8 changes, there is variability due to **X-inactivation**

• Randomly shut off one copy of the X chromosome

Though SMC1A is also located on the X chromosome this X-inactivation process does not apply to the SMC1A gene.

Mosaic Mutation

Few individuals have a 'mosaic change'

Genetic change in only some cells

Symptoms occur depending on where the mutation is located

Mosaic mutation

Proliferation

Genes Known For CdLS

Classic:

- *NIPBL*: 60%
- SMC1A: 5% (X-Linked)
- HDAC8: 4% (X-Linked)
- *SMC3*: 1-2%
- *RAD21*:<1%

Atypical/Overlapping:

- *BRD4*
- *KMT2A*
- *AFF4*
- ANKRD11
- *TAF1/6*

Diagnostic Genetic Testing

Single gene:

typically start with most common gene (NIPBL)

Panel:

2 or more CdLS genes at once

Exome Sequencing:

sequencing all genes

Type of testing based on symptoms. Can send testing for one (single gene) or more genes (panel).

NIPBL	RAD21
SMC1A	KMT2A
HDAC8	AFF4
SMC3	ANKRD1.

Diagnostic genetic testing: Exome

Evaluate functional parts of almost all 20,000+ genes looking for unexpected changes

CdLS Foundation Cornelia de Lange Syndrome Foundation, Inc.

https://dnalabsindia.com/blog/wha t-is-clinical-exome-sequencing/

Sample Types

Blood

Cheek Swab

Possible Interpretation of genetic test results

Positive

Disease causing genetic change

Negative

No genetic change found in genes associated with CdLS

Does not mean there is not a genetic change in individuals genes, just could not be found with current testing modality

Variant of Uncertain Significance

Genetic change identified

Not enough evidence to know if benign variation (normal) or affects the gene so that it does not work

Reading A Genetic Test Report - **POSITIVE**

THE UNIVERSITY OF CHICAGO GENETIC SERVICES LABORATORY

5841 S. Maryland Ave., Rm. G701, MC 0077 Chicago, Illinois 60637 Toll Free: (888) UC GENES Local: (773) 834 0555 FAX: (773)702-9130 ucgslabs@genetics.uchicago.edu www.dnatesting.uchicago.edu CLIA #: 14D0917593 CAP #: 18827-49

	NIPBL mutation analys	IS	
Ref physician:	Name:	Gender: female	
Phone: 215-590-2931	Sample accession#: 12.2429		
Fax: 215-590-3850 cc: Sarah Noon, CGC Children's Hospital of Philadelphia	Date	Sample type: peripheral blood-EDTA	
	Received: 11/19/2012	Collected: NA	
	Indication for testing: other specified anomalies		

RESULT: c.7219C>T (p.Arg2407*) pathogenic sequence change identified in the NIPBL gene in this patient.

GENE	NUCLEOTIDE CHANGE	AMINO ACID CHANGE	ZYGOSITY	INTERPRETATION	
NIPBL	c.7219C>T	p.Arg2407*	Heterozygous	Mutation	

INTERPRETATION: This pathogenic sequence change is the likely cause of this patient's Cornelia de Lange syndrome phenotype.

Reading A Genetic Test Report - NEGATIVE

DISEASE PREVENTION THROUGH GENETIC TESTING		CLIA #: 52D2065132 • CAP #: 7185561 3800 S. Business Park Ave.: Marshfield, WI 54449		
		Ph: 715-387-0484 · Fax 715-384-3661 www.preventiongenetics.com		Bruce R. Krawisz, M.D. Clinical Laboratory Director
Patient	San Type Colle Rec PG	nple Information e: Whole Blood ected: April 05, 2016 eived: April 08, 2016 ID: 2016-099-027	Ordering Paula Gold Massachus	Provider(s) lenberg, MD setts General Hospital

MOLECULAR GENETICS REPORT: Cornelia de Lange Syndrome NextGen Sequencing Panel

SUMMARY OF RESULTS: NEGATIVE

RESULTS AND INTERPRETATIONS: In this patient, for the relevant genes, we found no sequence variants that are likely to be a primary cause of disease.

These results should be interpreted in context of clinical findings, family history and other laboratory data. All genetic tests have limitations. Please see limitations and other information for this test on pages 3 - 5.

NOTES: Deletion and duplication testing is in progress and results will be reported separately. Genetic counseling is recommended.

GENES SEQUENCED (Transcript Numbers): HDAC8 (NM_018486.2), NIPBL (NM_133433.3), RAD21 (NM_006265.2), SMC1A (NM_006306.3), SMC3 (NM_005445.3)

Reading A Genetic Test Report – **INCONCLUSIVE**

CH The Children's Hospital of Philadelphia®

& LABORATORY MEDICINE

34TH STREET AND CIVIC CENTER BOULEVARD · PHILADELPHIA, PA 19104 · PHONE: 215-590-2277 · FAX: 215-590-2171

	Robert W. Doms, M.D., Ph.D., Chair an	d Pathologist-in-Chief
Patient:		Order #: DGD-18-2264
Account#:	LOC: GEN	Collection D/T: 4/23/2018 2:06 PM
MR#:	ATT DOC: IAN KRANTZ	Received D/T: 4/23/2018 3:26 PM
Age/Sex:	Reg By: IAN KRANTZ	Date of report: 5/23/2018
DOB:	Other Doc: SARAH RAIBLE	Sample type: Blood

Cornelia de Lange Seq + Del/Dup Panel

CLINICAL INDICATION

Microcephaly, failure to thrive, global developmental delays

RESULTS SUMMARY

INCONCLUSIVE: An established cause of the reported phenotype was NOT identified.

Sequence Variant(s)

Gene	Transcript	Variant	Zygosity	Classification	Inheritance	Disease	Position
SMCIA	NM_006306.3	c.1301G>C; p.Arg434Pro	Hem	VOUS	XL	Cornelia de Lange Syndrome 2	ChrX: 53436388

What Do We Do With A Variant of Unknown Significant (VUS)?

• Interpretation of the variant can change over time if new evidence is learned.

Examples of new evidence:

Another individual with CdLS also has the same genetic change

A study looks at how the change affects mice and it leads to symptoms like CdLS

• Evaluate additional genes if not all genes for CdLS have been tested

Alphabet of Genetic Results... the c's and p's

c.1345 A>G (p.Phe448Tyr)

- Genes are written in sequence of letters that stand for 'nucleotides': A, T, C, G
- "c." number (position) along gene where there is letter change (in this example, A to G)

Alphabet of Genetic Results... the c's and p's

c.1345 A>G (p.Phe448Tyr)

Every three letters code ('codons') for amino acid, which all together make up proteins of body

"p." normal amino acid, codon position in the gene, followed by the new amino acid with the letter change

Types of Gene Mutations

one set is from the mother, one is from the father.

pages of descriptions.

or the disruption of a sentence.

Types of Mutations (aka variants)

Missense

- Change in letter changes single amino acid
- Protein made but may be incorrect since wrong amino acid

Nonsense

- Change in letter leads to "stop" instruction codon
- No protein or a very shortened protein is made

Frameshift: insertion/deletion

- Affects pattern of '3 letters=1 codon'
- Change in letter affects multiple amino acids
- Protein may or may not be made, possibly wrong shape

Splice site

 Changes part of gene that affects how gene is processed into instruction to make protein

CdLS Foundation

• Without correct instruction, protein not made correctly or at all

Other Terminology

Genetic change only found on one of the two copies of the gene

Hemizygous

Genetic change found on the X chromosome in a male. Males only have one X chromosome so term is –hemi versus –hetero

Paternal or maternal: if genetic variant was inherited from father (paternal) or mother (maternal)

CdLS Foundation Cornelia de Lange Syndrome Foundation, Inc.

Genotype/Phenotype Correlations

"Genotype-Phenotype Correlation"

Association between certain mutation in a specific gene (genotype)

+

Resulting presence, absence or severity of symptoms (phenotype)

Genotype/Phenotype Correlations

NIPBL

- Characteristic facial features
- More commonly have structural differences (i.e. limb differences)
- Severity depends on type of mutation and where in the gene
 - Truncating tends to have a more significant effect on the gene that can ultimately block protein production

RAD21

- Typically do not have major structural differences
- Milder learning disabilities
- Small size, minor skeletal differences, and overlapping facial features

Genotype–phenotype correlations in CdLS due to *NIPBL* muta

Mannini et al. 2013

Genotype/Phenotype Correlations

HDAC8 (XL)

- Some differences compared to "typical" CdLS facial features
 - Delayed closure of the anterior fontanelle
- Varying pattern of skin pigmentation
- Less growth restriction and a lower frequency of microcephaly
- In females, severity affected by X-inactivation

SMCIA (XL but not affected by X inactivation) & SMC3

- Fewer structural differences, (i.e. limb difference or heart difference)
- Less significant impact on growth still have learning difficulties
- Missense vs Truncating SMC1A
 - Missense: CdLS
 - Truncating: seizure and intellectual disability presentation

Mannini et al. 2013

Benefits of Testing

Confirm a diagnosis – psychological benefit

Recurrence Risk

• **Prenatal diagnosis** - future pregnancies

Therapeutics

• Possibility of drug interactions with known gene mutation (future study)

• If it appears everyone with CdLS who has variant in a specific gene all has similar reaction to a medication, positive or negative, associations can be made and better recommendations created

Research opportunities - to better understand CdLS

- Expanding "genotype/phenotype" correlations
 - i.e. SMC1A population:
 - frameshift mutation: seizures and other symptoms
 - most missense mutation: typical CdLS presentation

Impact on medical management

Limitations of Testing

Testing is not perfect:

• Detection less than 100% which leaves possibility for uncertainty of unknown

Variants of Unknown Significance (VUS)

• Leaves individual and family with uncertainty

Cost

• Expensive and not always covered by insurance

Sample collection difficult

Prenatal Genetic Testing

Targeted variant

• Testing for known genetic change in family Through amniocentesis or CVS

DNA panel

- Testing for group of genes related to just CdLS or large group of genes that includes those for CdLS
 - Usually recommended when there are ultrasound findings suggesting CdLS through amniocentesis or CVS

CdLS Foundation Cornelia de Lange Syndrome Foundation, Inc.

Noninvasive Prenatal Genetic Testing (NIPT)

Use Mom's blood, which contains baby's blood, to check for genetic change

- Fetal DNA in maternal circulation
- Results from breakdown of fetal cells
- Primarily **placental** in origin
- Clears from maternal system within hours after delivery

Estimated to be 10-15% of cell-free fetal DNA in maternal system

Cell free fetal DNA

Non-invasive Prenatal "Testing"

Vistara - offered through Natera Lab

Research Genetic Testing

Cost may be covered by research laboratory

Follow-up testing in clinical laboratory

• Research labs have fewer standard requirements vs. clinical labs

Results

- Types of results (positive, negative, VUS) are the same
- NOT all research groups give results
- Some may report positive results and not the VUS information

If participating in a research study, you can ask if this information will be given

THANK YOU